
Journal of Sound and Vibration (2002) 253(2), 373–388
doi:10.1006/jsvi.2001.4047 available online at http://www.idealibrary.com on
RITZVECTORAPPROACH FORSTATICANDDYNAMIC
ANALYSISOF PLATESWITH EDGE BEAMS

J. Yang and A. Gupta

Department of Civil Engineering, North Carolina State University, Raleigh, NC 27695-7908, U.S.A.,
E-mail: agupta1@eos.ncsu.edu

(Received 25 April 2001, and in final form 14 September 2001)

A Ritz vector approach is used to develop new formulations for evaluating the static and
the dynamic characteristics of rectangular plates with edge beams. Unlike previous studies
in which stiffness coefficients with specified distributions along the plate edges are used to
represent the effect of edge restraints, the effect of elastic edge restraints is accounted for by
including appropriate integrals for edge beams in the expressions for total kinetic and
potential energies in a Rayleigh–Ritz approach. The effect of various types of boundary
conditions at the beam ends is accounted for by considering the corresponding Ritz vectors.
The contribution of beam mass to the total kinetic energy is also considered in the
proposed approach. This effect has often been neglected in the previous studies but can be
significant in some applications. The results obtained from the application of the proposed
approach to a variety of examples are compared with the corresponding results obtained
from the finite element analysis.

# 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

Transverse vibration of plates with edge beams has been widely investigated in a variety of
applications that include aerospace, civil, naval, and power plant structural systems.
Leissa et al. [1] presented some of the early developments in this subject and summarized
the problems associated with it. Takabatake and Nagareda [2] categorized the research on
elastically restrained plates into two types: (1) formulation of the governing equations, and
(2) analytical methods for the solution of these equations in plates with different types of
boundary conditions. Takabatake and co-workers [3–6] presented the governing equations
for various types of rectangular and circular plates under Kirchoff–Love hypotheses
whereas Laura and Grossi [7] studied the transverse vibration of rectangular plates with
elastic translational and rotational edge restraints. Warburton and Edney [8] used
Rayleigh–Ritz approach in which a pair of Ritz vectors corresponding to two different
idealized boundary conditions is selected for representing an intermediate boundary
condition thereby avoiding the problem associated with the selection of Ritz vectors in
plates with elastic edge restraints. The two Ritz vectors are then used to develop an
eigenvalue problem for evaluating the fundamental frequency. Gorman [9] used the
method of superposition to provide useful generalized solutions for plates with arbitrarily
distributed translational and rotational restraints along the edges. The translational and
rotational restraints in these studies were represented in terms of stiffness coefficients
having specified distributions along the plate edge. Although these formulations provide
accurate solutions, they could not be applied directly to a majority of practical situations
0022-460X/02/$35.00 # 2002 Published by Elsevier Science Ltd.
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wherein the distribution of elastic restraints along the plate edges cannot be determined.
For example, the variation of translational and rotational restraints provided by the
presence of additional structural members such as beams along the plate edges is
dependent upon not only the beam cross-section but also the boundary conditions at the
beam ends. The distribution of these stiffness coefficients cannot be easily determined
a priori. Takabatake and Nagareda [2] developed a simplified analytical method under the
assumption of Kirchoff–Love hypotheses using Galerkin method to overcome this
limitation. New formulations are provided for initial selection of the stiffness coefficients.
These initial values and the shape functions are then improved iteratively by the
convergence of maximum deflection and natural frequency. However, the translational
and the rotational stiffness coefficients calculated from the new formulations are then
assumed to be uniformly distributed over the entire length of plate edges. Results obtained
from the application of this method to different examples are validated by comparison
with the results evaluated from the corresponding finite element analyses. In this paper, we
present an alternate method for static and dynamic analyses of elastic plates with edge
beams. It is based on the useful insights provided by Warburton and Edney [8] as well as
Takabatake and Nagareda [2], and employs static beam functions in Rayleigh–Ritz
method to account for the actual bending and torsional stiffness of edge beams. The
proposed approach is not based on any assumption regarding the distribution of
translational and rotational stiffness imparted by the edge beams.

2. GOVERNING EQUATIONS FOR A PLATE WITH EDGE BEAMS

Consider an isotropic rectangular uniform plate with edge beams, as shown in Figure 1.
Assuming that the Kirchoff–Love hypotheses is valid, the equation of motion for the
transverse plate vibration can be written as
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Figure 1. Rectangular plate with edge beams.
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in which m0 is the mass per unit area; w is the transverse displacement of the plate as a
function of co-ordinates x, y and time t; c is the damping coefficient; D0 is the flexural
rigidity of the plate; and p is the external load. Expressions for the boundary conditions in
a plate supported on edge beams are expressed by Vinson [10] as follows:

(1) Boundary conditions at x ¼ 0 and Lx:
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(2) Boundary conditions at y ¼ 0 and Ly:
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and w ¼ 0 at the corners. The terms ðEIx1Þ
b; ðEIx2Þ

b; . . . and ðGJx1Þ
b; ðGJx2Þ

b; . . . in the
above equations represent the bending and the torsional stiffness of the edge beams. The
superscript b is used to denote the quantities for edge beams whereas the subscripts x1;x2
and y1; y2 are used to represent the beams that are parallel to x- and y-axis respectively.

Takabatake and Nagareda [2] proposed new formulations to evaluate the stiffness
coefficients for the translational and the rotational stiffness of supporting edge beams in
which the deflection of an edge beam is represented by a sinusoidal function to evaluate
the initial values of the stiffness coefficients that are then improved iteratively. Further, the
effect of slab on the beam stiffness coefficients is accounted for by using two additional
factors, fB and fJ ; for the terms corresponding to the bending and the torsion
respectively. These factors have different values for the beams that are simply supported
and for the beams that are clamped at their ends. The factors are determined based on
engineering and professional experience. For simplicity, Takabatake and Nagareda [2]
assume the stiffness coefficients calculated by the new formulations to be uniformly
distributed over the entire length of plate edge. The assumptions made in this approach
may be avoided by combining it with the method proposed by Warburton and Edney [8].
Instead of considering the stiffness coefficients to be uniformly distributed along the
length, the bending and the torsion characteristics of the beam can be considered by
incorporating appropriate integrals in the expressions for total kinetic and potential
energies. An eigenvalue problem for transverse plate vibration may then be developed
using these expressions in a Ritz-vector-based Lagrangian approach.
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3. FREE VIBRATION ANALYSIS

Let us express the transverse displacement w of a plate at any instant t as a summation
of Ritz vectors

wðx; y; tÞ ¼
Xn

r¼1

qrðtÞfrðx; yÞ; ð10Þ

where qrðtÞ represent the generalized co-ordinates as a function of time t; and frðx; yÞ the
Ritz vectors as functions of co-ordinates x and y. For rectangular plates, frðx; yÞ can be
further simplified as

frðx; yÞ ¼ fxrðxÞfyrðyÞ: ð11Þ

Each of the two Ritz vectors fxrðxÞ and fyrðyÞ are normalized to unity. Thus, the motion
at a given location is linearly transformed into an n-degree-of-freedom (d.o.f) system using
the above equations. Eigenvalue problem of this generalized n-.d.o.f. system can be written
as

Kq ¼ o2Mq; ð12Þ

where K and M are the equivalent stiffness and mass matrices, respectively, and q is the
vector of normal co-ordinates. Solution of the eigenvalue problem gives the plate
frequencies and the corresponding eigenvectors. The jth mode shape can be expressed
using the elements of the jth eigenvector qj as

cjðx; yÞ ¼
Xn

i¼1

qjifxiðxÞfyiðyÞ: ð13Þ

4. EQUIVALENT MASS AND STIFFNESS MATRICES

The kinetic energy, T ; of a plate with edge beams is given by

T ¼ Tp þ Txb þ Tyb; ð14Þ

in which Tp; Txb; and Tyb are the kinetic energy contributions of the plate, the edge beams
parallel to the x-axis, and the edge beams parallel to the y-axis respectively. The kinetic
energy, Tp; of a rectangular plate having uniform thickness h0; and mass density r is given
by
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where Lx is the plate dimension along the x-axis and Ly that along the y-axis. The kinetic
energy contributions of the edge beams, Txb and Tyb; can be written as
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in which mxj and myi represent the mass per unit length of jth edge beam parallel to the x-
axis located at a distance yj from the origin, and ith edge beam parallel to the y-axis
located at a distance of xi from the origin respectively.
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The potential energy, U ; of a plate with edge beams is given by

U ¼ Up þ Uxb þ Uyb; ð18Þ

where Up; Uxb; and Uyb are the potential energy contributions of the plate, the edge beams
parallel to the x-axis and the edge beams parallel to the y-axis respectively. Further,
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in which E and v are Young’s modulus of elasticity and the Poisson ratio for plate
material. Uxb and Uyb are given by

Uxb ¼ Uxb1 þ Uxb2; ð20Þ
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Uyb ¼ Uyb1 þ Uyb2; ð22Þ
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where Ix1;2 represents the moment of inertia for the edge beams parallel to the x-axis and
Iy1;2 that for the edge beams parallel to the y-axis. Similarly, Jx1;2 and Jy1;2 represent the
corresponding torsion constants. G is the shear modulus for the beam material. According
to Lagrangian approach, the equation of motion for undamped free vibration can be
expressed as
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in which qr is used to represent the generalized co-ordinate qrðtÞ and ’qqr is its time
derivative. Therefore, the elements of equivalent mass matrix can be evaluated using n

equations obtained by differentiating T with respect to the ’qqr’s:
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The elements, mrs; of the equivalent mass matrix, M; for the plate with edge beams are
given by
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Likewise, differentiating U with respect to the qr’s yields n equations of the form
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The elements, krs; of the equivalent stiffness matrix, K; are given by
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The above formulations are written for a generalized case wherein n Ritz vectors are
used in equation (10) to evaluate the response quantity of interest. Later, we illustrate that
only a few Ritz vectors are needed in the application of this approach to real-life problems.
Once the Ritz vectors needed in the solution of a particular problem are identified, the
various terms in the above equations can be calculated either numerically or closed form.
It should be noted that the various stiffness terms corresponding to edge beams give
equivalent distributions of the bending and the torsion stiffness at the plate edges.
However, these distributions cannot be used directly in the method presented by other
researchers such as that by Gorman [9]. Another difference of the proposed formulations
from the existing formulations is evident in the expressions for the elements of the
equivalent mass matrix. The mass participation of edge beams can be significant and
unlike many previous studies, its effect is included in the proposed approach. Further
discussion on the number and the nature of Ritz vectors needed in an analysis is presented
in the next section.

5. SELECTION OF RITZ VECTORS

Accuracy of the calculated response quantities in the Rayleigh–Ritz method depends on
the selection of Ritz vectors which in turn depends upon the boundary conditions at the
plate edges and beam ends. Several mathematical functions have been proposed as Ritz
vectors by various researchers for idealized boundary conditions [11–15]. In this paper, we
use simple and easy-to-use mathematical functions given by Blevins [11].

For plates that are restrained elastically by the edge beams, more than one simple Ritz
vector may be needed. As stated earlier, Warburton and Edney [8] proposed such an
approach in which two Ritz vectors corresponding to two different idealized boundary
conditions are considered for representing an intermediate boundary condition. Several
(ideally infinite) vectors can be used in this procedure. However, the computational
complexity increases as additional Ritz vectors are included in the analysis. Table 1 gives
some examples of typical mathematical functions that can be used as Ritz vectors for a few
idealized boundary conditions.

For rectangular plates, selection of Ritz vectors requires evaluation of two boundary
conditions at each edge, one for the out-of-plane translation and the other for the rotation
about the plate edge. Let us consider a plate shown in Figure 2 to illustrate the selection of
Ritz vectors. The plate has beams on all four edges which are restrained against out-of-
plane translation as well as rotation at their ends (plate’s corners). The beam at any
particular edge can deform in bending thus allowing an out-of-plane translation at the
plate edge. Similarly, the beam may also undergo a torsional deformation allowing a
rotation about the plate edge. The degree of translation and rotation at a particular plate
edge is governed by the beam’s bending and the torsional stiffness, as shown in equations
(37–40). For a beam with relatively large bending stiffness and low torsional stiffness, the
out-of-plane translation is negligible and the boundary condition converges to that of a



Table 1

Ritz vectors for idealized boundary conditions

Description Ritz vector

Clamped–clamped fcc cosh
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Figure 2. Elastic plate with edge beams, clamped at corners.
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pinned support. Similarly, in a beam with relatively high values of both the bending and
the torsional stiffness, not only is the out-of-plane translation negligible but also the
rotation about the plate edge. For such a beam, the boundary condition at the plate’s edge
converges to that of a clamped support. In addition to the pinned and clamped boundary
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conditions, an additional limiting condition corresponds to that of a free edge when the
values for both the bending as well as the torsional beam stiffness are relatively small.
Consequently, three Ritz vectors corresponding to clamped, pinned, and free boundary
conditions at a particular edge are needed to accurately account for the bending and the
torsional beam stiffness in a generalized solution. However, an additional (fourth) Ritz
vector is needed to account for the restraints at the beam ends (plate’s corners). For the
plate shown in Figure 2, all the four corners are considered to be clamped. Therefore, an
additional Ritz vector for clamped–clamped condition is needed in the directions parallel
to the x as well as the y axes. Therefore, equation (10) can be written as

wðx; y; tÞ ¼ q1ðtÞfccfcc þ q2ðtÞfppfpp þ q3ðtÞfccfff þ q4ðtÞfff fcc: ð41Þ

Next, let us consider that the particular plate shown in Figure 2 is 0�12m thick and has
span lengths, Lx and Ly; equal to 6m. The properties for the plate material are:
E ¼ 2�06� 104 Mpa, v ¼ 0�17 and r ¼ 2400 kg/m3. Further, all the four beams supporting
the plate are identical with moment of inertia equal to 0�00933m4 and the torsion constant
equal to 0�0048m4. The mass per unit length for each beam is 518�4 kg/m.

The fundamental frequency for the transverse vibration of this plate calculated by using
equation (41) in the proposed approach is 14�0Hz which is close to 13�9Hz calculated
from a detailed finite element analysis. A comparison of the plate’s fundamental mode
shape evaluated from the two methods is shown in Figures 3 and 4.

To illustrate the effect of boundary conditions at the beam ends, let us consider a
modification of the above example so that the plate can undergo unrestrained rotation at
Figure 3. Fundamental mode shape at y ¼ 3m, plate with clamped corners: }, finite element; - -&- -, Ritz
vector.

Figure 4. Fundamental mode shape at y ¼ 6m, plate with clamped corners: }, finite element; - -&- -, Ritz
vector.
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all the four corners, i.e., the plate is considered to be simply supported at the corners. The
fundamental frequency of the modified plate–beam system as evaluated from a finite
element analysis is equal to 10�8Hz. To solve this problem using the proposed approach,
equation (41) is re-written as

wðx; y; tÞ ¼ q1ðtÞfccfcc þ q2ðtÞfppfpp þ q3ðtÞfppfff þ q4ðtÞfff fpp; ð42Þ

in which the Ritz vector for clamped–clamped boundary conditions at beam ends is
replaced by that for pinned–pinned boundary conditions. The fundamental frequency
calculated by using the above equation equals 10�9Hz and is close to 10�8Hz calculated
from the finite element analysis. Similarly, the mode shapes from the two sets of analyses
are also close, as shown in Figures 5 and 6.

In the above example, contribution of the beam’s kinetic energy to the total kinetic
energy of the system is considered in both the Ritz vector approach as well as the finite
element analysis. This effect has often been neglected in the previous studies. To illustrate
the significance of this effect, a series of solutions were evaluated for the example described
above by varying the mass per unit length of the edge beams. For a plate with simply
supported corners, Figure 7 shows a comparison of the fundamental frequencies evaluated
by considering the effect of beam mass with those evaluated by neglecting it. As shown in
the figure, this effect can be significant and should be considered.

A fewer number of Ritz vectors are needed in the proposed approach if the boundary
conditions at a particular plate edge can be estimated to be close to idealized conditions.
For the plate shown in Figure 8, the out-of-plane translation is restrained at all four edges
Figure 5. Fundamental mode shape at y ¼ 3m, plate with simply supported corners:}, finite element; - -&- -,
Ritz vector.

Figure 6. Fundamental mode shape at y ¼ 6m, plate with simply supported corners:}, finite element; - -&- -,
Ritz vector.



Figure 7. Variation of fundamental frequency with edge beam mass, plate with simply supported corners: },
beam mass included; - - - -, beam mass neglected.

Figure 8. Plate with edge beam at x ¼ 0; simply supported on four edges.
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(simply supported edges) and a beam is present at only one edge. Equation (10) for such a
plate can be written using only two sets of Ritz vectors,

wðx; y; tÞ ¼ q1ðtÞfppfpp þ q2ðtÞfcpfpp: ð43Þ

If the geometrical and material properties for the plate and the beam shown in Figure 8
are identical to those shown in Figure 2 and described earlier, the fundamental plate
frequency evaluated by using the above equation is found to be 10�3Hz which is identical
to that evaluated from a corresponding finite element analysis. The fundamental mode
shape is compared in Figure 9.

Another situation, uncommon in civil structures but sometimes encountered in power
plant and aerospace structural systems, is that of a beam with high torsional stiffness but
low bending stiffness. For such an edge, the boundary condition can be represented as an
intermediate between the pinned and the sliding (clamped edge on a roller) condition. For
a plate shown in Figure 10, an edge beam is located at x ¼ 0 and other three edges are
simply supported. We can write

wðx; y; tÞ ¼ q1ðtÞfppfpp þ q2ðtÞfspfpp; ð44Þ

where the subscript sp represents a sliding condition at the plate edge with beam and a
pinned condition at the other end. We encountered such a plate in a power plant structural
system with Lx;¼ 0�84m, Ly;¼ 1�78m, h0 ¼ 2�667� 10�3 m, E ¼ 2�0� 105 Mpa, v ¼ 0�3



Figure 9. Fundamental mode shape at y ¼ 3m, simply supported plate with edge beam at x ¼ 0: }, finite
element; - -& - -, Ritz vector.

Figure 10. Plate with edge beam at x ¼ 0; simply supported on three edges.
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and r ¼ 31�3 kg/m3. The edge beam located at x ¼ 0 had I ¼ 4�0� 10�8 m4,
J ¼ 4�58� 10�10 m4 and m ¼ 0�0139 kg/m. The fundamental frequency for this case
calculated from the proposed approach was found to be 8�6Hz. The corresponding value
calculated from a finite element analysis is also 8�6Hz. The mode shapes for this plate
evaluated from the two analyses are compared in Figure 11.

Next, we illustrate the accuracy of the proposed approach for a series of solutions that
are obtained by varying the bending and the torsional stiffness of edge beams in a plate
shown in Figure 2. To start with, a high value is taken for the moment of inertia (high
bending stiffness) of edge beams. Then, the torsional constant (torsional stiffness) of the
edge beams is varied from a very low value (simply supported boundary condition) to a
very high value (fixed boundary condition). Figure 12 compares the fundamental
frequencies of the plate evaluated from the proposed approach with the corresponding
values obtained from the finite element analyses.

To study this effect further, a very small value is taken for the torsional stiffness of the
edge beams. Then, the moment of inertia is varied from a very low value (unrestrained



Figure 11. Fundamental mode shape at y ¼ 0�89m, simply supported plate with beam at x ¼ 0: }, finite
element; - -& - -, Ritz vector.

Figure 12. Variation of the fundamental frequency with the torsional stiffness of edge beams (I ¼ 0�01m4):},
finite element; - -& - -, Ritz vector.

Figure 13. Variation of the fundamental frequency with the bending stiffness of edge beams (J ¼ 10�6 m4): },
finite element; - -& - -, Ritz vector.
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boundary condition) to a very high value (simply supported boundary condition).
Comparison of the fundamental frequencies for these cases with the corresponding finite
element analyses results is shown in Figure 13.

6. STATIC ANALYSIS

The equivalent stiffness matrix, K; described earlier in equation (12) can also be used to
perform a static analysis. The governing equation for a static load can be written as

Kq ¼ f; ð45Þ
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in which f is the equivalent static load vector. For a uniformly distributed load pðx; yÞ on
the plate, the ith term in the equivalent load vector is given by

fi ¼
Z Lx

0

Z Ly

0

pfxiðxÞfyiðyÞ dx dy: ð46Þ

For a concentrated load P at co-ordinate (x0; y0), the above expression becomes

fi ¼ Pðx0; y0Þfxiðx0Þfyiðy0Þ: ð47Þ

For uniformly distributed static loads, the proposed method gives accurate results by
using the same Ritz vectors as those included in the evaluation of free vibration
characteristics. For concentrated loads, the results obtained by using these vectors will be
inaccurate. Consequently, one may use load-dependent Ritz vectors. This involves
selection of mathematical functions that represent the static deformation shapes of a
simple beam subjected to a unit load at the same location as that in the slab. As stated
earlier, at least two Ritz vectors corresponding to two different idealized boundary
conditions at the beam ends should be considered in order to account for an intermediate
boundary condition. For example, consider a concentrated load of 100 kN at mid-span
location of the plate shown in Figure 2. The corresponding static beam deformations,
shown in Figure 14, for the clamped and pinned boundary conditions can be adopted as
Ritz vectors, i.e.,

fpp ¼
xð3L2 � 4x2Þ

L3
; fcc ¼

4x2ð3L � 4xÞ
L3

; 05x5
L

2
: ð48; 49Þ

The maximum plate deflection obtained by using the above equation in the proposed
approach is 0�0075m (0�75 cm) compared to 0�0078m (0�78 cm) obtained from the
corresponding finite element analysis. The displacement shapes at y ¼ 3m are compared in
Figure 15. It should be noted that the self-weight of the plate and the beams was neglected
Figure 14. Displacement of beams subjected to concentrated load at mid-span: (a) clamped–clamped, D ¼
ðP=48EIÞð3Lx2 � x3Þ; 05x5L=2; (b) pinned–pinned D ¼ ðP=16EIÞð3L2x � 4x3Þ; 05x5L=2:

Figure 15. Displacement of the plate at y ¼ 3m, 100 kN concentrated load at mid-span location: }, finite
element; - -& - -, Ritz vector.
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in the evaluation of the above results to study the accuracy of the proposed approach for
concentrated static loads.

7. SUMMARY AND CONCLUSIONS

Several formulations have been presented over the years to evaluate the static and the
dynamic characteristics of plates with elastic edge restraints. In most of the earlier studies,
the bending and the torsional restraints are represented as stiffness coefficients with
specified distributions along the plate edge. However, no formulations are presented to
evaluate the distributions imparted by the presence of structural members such as beams
along the plate edges. Recently, Takabatake and Nagareda [2] presented new formulations
for evaluating the stiffness coefficients corresponding to edge beams which were then
assumed to be uniformly distributed along the plate edges. In addition to the assumption
of uniform distribution for the variation of stiffness coefficients along the plate edges, the
effect of boundary conditions at the beam ends (plate corners) is included in terms of
factors that are based on professional experience.

In this paper, a Ritz vector approach is developed based on the useful insights provided
by Takabatake and Nagareda [2] as well as Warburton and Edney [8]. It avoids some of
the assumptions made in these earlier studies and accounts for the actual bending and
torsional characteristics of edge beams by including appropriate integrals in the Rayleigh–
Ritz approach. Consequently, no assumption is needed to represent the effect of boundary
conditions at the beam ends which is included in the proposed approach by considering
the corresponding Ritz vectors. The proposed approach also accounts for the contribution
of beam mass to the total kinetic energy, an effect that can be significant but is often
neglected. Accuracy of the proposed approach is evaluated by comparison of the results
with the corresponding values obtained from the finite element analyses. The results from
the two sets of analyses for static loads as well as transverse plate vibrations in rectangular
plates with different types of boundary conditions are found to be in good agreement with
each other. It is shown that the evaluation of accurate results for concentrated static loads
require consideration of load-dependent Ritz vectors in the proposed approach. For such
loads, the Ritz vectors employed in the evaluation of transverse vibration characteristics
would yield inaccurate results.
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